4.6 Article

Estimating the pattern of synchrony in fluctuating populations

期刊

JOURNAL OF ANIMAL ECOLOGY
卷 74, 期 4, 页码 601-611

出版社

WILEY
DOI: 10.1111/j.1365-2656.2005.00942.x

关键词

environmental stochasticity; spatial ecology; Moran effect; spatial scaling

向作者/读者索取更多资源

1. A central question in population ecology is how to estimate the effects of common environmental noise, e.g. due to large-scale climate patterns, on the synchrony in population fluctuations over large distances. We show how the environmental variance can be split into components generated by several environmental variables and how these can be estimated from time-series observations. 2. With a set of time-series observations from different locations not necessarily covering the same time span, it is shown how the spatial autocorrelation of the residual variance component, not explained by the covariates and corrected for demographic stochasticity, can be estimated using classical multinormal theory. 3. Some previous results on spatial scaling in continuous linearized models on log scale are extended to also provide the scaling for the residuals. This is shown to be close to the spatial scaling of the autocorrelation in the environmental noise and only weakly affected by migration. 4. The logistic model of local population dynamics with the NAO index as the only covariate is fitted to 22 populations of the Continental great cormorant Phalacrorax carbo sinensis. The spatial scale of the environmental noise is estimated to be about 155 km. The NAO index alone accounts for about 10% of the total environmental variance and nearly all of the regional environmental variance (long-distance environmental autocorrelation).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据