4.8 Article

In situ assessment of biodegradation potential using biotraps amended with 13C-labeled benzene or toluene

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 39, 期 13, 页码 4983-4989

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es048037x

关键词

-

向作者/读者索取更多资源

Stable isotope fractionation analysis of an aquifer heavily contaminated with benzene (up to 850 mg L-1) and toluene (up to 50 mg L-1) at a former hydrogenation plant in Zeitz (Saxonia, Germany) has suggested that significant biodegradation of toluene was occurring. However, clear evidence of benzene biodegradation has been lacking at this site. Determining the fate of benzene is often a determining factor in regulatory approval of a risk-based management strategy. The objective of the work described here was the demonstration of a new tool that can be used to provide proof of biodegradation of benzene or other organics by indigenous microorganisms under actual aquifer conditions. Unique in situ biotraps containing Bio-Sep beads, amended with C-13-labeled or C-12 nonlabeled benzene and toluene, were deployed at the Zeitz site for 32 days in an existing groundwater monitoring well and used to collect and enrich microbial biofilms. Lipid biomarkers or remaining substrate was extracted from the beads and analyzed by mass spectrometry and molecular methods. Isotopic analysis of the remaining amounts of C-13-labeled contaminants (about 15-18% of the initial loading) showed no alteration of the C-12/C-13 ratio during incubation. Therefore, no measurable exchange of labeled compounds in the beads by the nonlabeled compounds in the aquifer materials occurred. Isotopic ratio analysis of microbial lipid fatty acids (as methyl ester derivatives) from labeled benzene- and toluene-amended biotraps showed C-13 enrichment in several fatty acids of up to delta (C-13) 13400 parts per thousand, clearly verifying benzene and toluene biodegradation and the transformation of the labeled carbon into biomass by indigenous organisms under aquifer conditions. Fatty acid profiles of total lipid fatty acids and the phospholipid fatty acid fraction and their isotopic composition showed significant differences between benzene- and toluene-amended biotraps, suggesting that different microbial communities were involved in the biodegradation of the two compounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据