4.8 Article

Uncatalyzed synthesis, thermal and mechanical properties of polyurethanes based on poly(ε-caprolactone) and 1,4-butane diisocyanate with uniform hard segment

期刊

BIOMATERIALS
卷 26, 期 20, 页码 4219-4228

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2004.11.005

关键词

polyurethane; degradation; polycaprolactone; elastomer; scaffold

向作者/读者索取更多资源

Polyurethanes based on poly(epsilon-caprolactone) (PCL) (750-2800g/mol) and 1,4-butane diisocyanate (BDI) with different soft segment lengths and constant uniform hard segment length were synthesized in absence of catalysts for the production of a degradable meniscus scaffold. First the polyesterdiols were endcapped with BDI yielding a macrodiisocyanate with a minimal amount of side reactions and a functionality of 2.0. Subsequently, the macrodiisocyanates were extended with 1,4-butanediol in order to obtain the corresponding polyurethane. The polyurethanes had molecular weights between 78 and 160 kg/mol. Above molar masses of 1900 g/mol of the polyesterdiol crystalline PCL was found while the hard segment showed an increase in melting point from 78 to 122 degreesC with increasing hard segment content. It was estimated that the percentage crystallinity of the hard segment varied between 92 and 26%. The Young's modulus varied between 30 and 264 MPa, the strain at break varied between 870 and 1200% and tear strengths varied between 97 and 237 kJ/m(2). (C) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据