4.6 Review

A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts

期刊

APPLIED CATALYSIS A-GENERAL
卷 346, 期 1-2, 页码 1-27

出版社

ELSEVIER
DOI: 10.1016/j.apcata.2008.05.018

关键词

synthesis gas; hydrogen; partial oxidation; methane; nickel; cobalt; iron

资金

  1. Research Council of Norway
  2. StatoilHydro
  3. Norwegian University of Science and Technology (NTNU)

向作者/读者索取更多资源

Catalytic partial oxidation of methane has been reviewed with an emphasis on the reaction mechanisms over transition metal catalysts. The thermodynamics and aspects related to heat and mass transport is also evaluated, and an extensive table on research contributions to methane partial oxidation over transition metal catalysts in the literature is provided. Presented are both theoretical and experimental evidence pointing to inherent differences in the reaction mechanism over transition metals. These differences are related to methane dissociation, binding site preferences, the stability of OH surface species, surface residence times of active species and contributions from lattice oxygen atoms and support species. Methane dissociation requires a reduced metal surface, but at elevated temperatures oxides of active species may be reduced by direct interaction with methane or from the reaction with H, H-2, C or CO. The comparison of elementary reaction steps on Pt and Rh illustrates that a key factor to produce hydrogen as a primary product is a high activation energy barrier to the formation of OH. Another essential property for the formation of H-2 and CO as primary products is a low surface coverage of intermediates, such that the probability of O-H, OH-H and CO-O interactions are reduced. The local concentrations of reactants and products change rapidly through the catalyst bed. This influences the reaction mechanisms, but the product composition is typically close to equilibrated at the bed exit temperature. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据