4.7 Article Proceedings Paper

Modelling impact angle effects on erosion-corrosion of pure metals: Construction of materials performance maps

期刊

WEAR
卷 259, 期 1-6, 页码 243-255

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.wear.2005.02.012

关键词

impact angle; erosion-corrosion maps; pure metals

向作者/读者索取更多资源

In studies of the effect of erosion-corrosion in aqueous conditions, impact angle effects are frequently ignored. This is despite the fact that erosion has a function of impact angle and can vary frequently depending on the nature of particle/target interactions. In such cases, the impact angle effects may change depending on whether the eroding particle encounters a metallic surface or an oxide film. This work describes extension of a model already developed for erosion-corrosion of Fe to a range of pure metals, Ni, Cu, and At at a range of pHs. The impact angle effects were estimated based on models from the solid particle erosion literature. The corrosion stability regimes were identified using Pourbaix diagrams for various pure metals. The results were used to generate erosion-corrosion mechanism maps showing the differences in the impact angle effects at various pHs for the pure metals. The changes in wastage regime for the various pure metals as a function of impact angle and pH were demonstrated. Materials performance maps were generated using such models showing how wastage rates may be optimised for exposure to impact angle, pH and electrochemical potential. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据