4.6 Article

Zinc catalyzed conversion of methanol-methyl iodide to hydrocarbons with increased formation of triptane

期刊

APPLIED CATALYSIS A-GENERAL
卷 336, 期 1-2, 页码 48-53

出版社

ELSEVIER
DOI: 10.1016/j.apcata.2007.08.035

关键词

methanol; zinc; zinc oxide; methanol to hydrocarbon; methanol to olefin

向作者/读者索取更多资源

At 200 degrees C under autogeneous pressure, mixtures of methanol and methyl halides are converted with zinc to a mixture of hydrocarbons. The reaction of methanol and methyl iodide mixtures over zinc or zinc oxide gives 2,2,3-trimethylbutane (triptane), a desirable high-octane compound in significant selectivity. As alternative to previously known ZnI2 or ZnBr2/methanol conversion, the present protocol does not require the use of metal halide catalysts. The initial step of the mechanism of conversion methanol/methyl iodide mixtures to hydrocarbons does not involve strongly acidic species. On the basis of the obtained experimental data with both zinc and zinc oxide, which are amphoteric in nature, the intermediacy of a zinc methoxy species is considered to be the key step for the formation of hydrocarbons. The proposed formation of hydrocarbons is considered as a parallel reaction to ethylene oligomerization to aromatic hydrocarbons. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据