4.6 Article

Locomotion of articulated bodies in a perfect fluid

期刊

JOURNAL OF NONLINEAR SCIENCE
卷 15, 期 4, 页码 255-289

出版社

SPRINGER
DOI: 10.1007/s00332-004-0650-9

关键词

locomotion; perfect fluid; Lagrangian; principal bundle; connection

向作者/读者索取更多资源

This paper is concerned with modeling the dynamics of N articulated solid bodies submerged in an ideal fluid. The model is used to analyze the locomotion of aquatic animals due to the coupling between their shape changes and the fluid dynamics in their environment. The equations of motion are obtained by making use of a two-stage reduction process which leads to significant mathematical and computational simplifications. The first reduction exploits particle relabeling symmetry: that is, the symmetry associated with the conservation of circulation for ideal, incompressible fluids. As a result, the equations of motion for the submerged solid bodies can be formulated without explicitly incorporating the fluid variables. This reduction by the fluid variables is a key difference with earlier methods, and it is appropriate since one is mainly interested in the location of the bodies, not the fluid particles. The second reduction is associated with the invariance of the dynamics under superimposed rigid motions. This invariance corresponds to the conservation of total momentum of the solid-fluid system. Due to this symmetry, the net locomotion of the solid system is realized as the sum of geometric and dynamic phases over the shape space consisting of allowable relative motions, or deformations, of the solids. In particular, reconstruction equations that govern the net locomotion at zero momentum, that is, the geometric phases, are obtained. As an illustrative example, a planar three-link mechanism is shown to propel and steer itself at zero momentum by periodically changing its shape. Two solutions are presented: one corresponds to a hydrodynamically decoupled mechanism and one is based on accurately computing the added inertias using a boundary element method. The hydrodynamically decoupled model produces smaller net motion than the more accurate model, indicating that it is important to consider the hydrodynamic interaction of the links.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据