4.6 Article

Robust TaNx diffusion barrier for Cu-interconnect technology with subnanometer thickness by metal-organic plasma-enhanced atomic layer deposition -: art. no. 014308

期刊

JOURNAL OF APPLIED PHYSICS
卷 98, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1935761

关键词

-

向作者/读者索取更多资源

TaNx diffusion barriers with good barrier properties at subnanometer thickness were deposited by plasma-enhanced atomic layer deposition (PE-ALD) from pentakis(dimethylamino)Ta. Hydrogen and/or nitrogen plasma was used as reactants to produce TaNx thin films with a different nitrogen content. The film properties including the carbon and oxygen impurity content were affected by the nitrogen flow during the process. The deposited film has nanocrystalline grains with hydrogen-only plasma, while the amorphous structure was obtained for nitrogen plasma. The diffusion barrier properties of deposited TaN films for Cu interconnects have been studied by thermal stress test based on synchrotron x-ray diffraction. The results indicate that the PE-ALD TaN films are good diffusion barriers even at a small thickness as 0.6 nm. Better diffusion barrier properties were obtained for higher nitrogen content. Based on a diffusion kinetics analysis, the nanocrystalline microstructure of the films was responsible for the better diffusion barrier properties compared to polycrystalline PE-ALD TaN films deposited from TaCl5. (c) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据