4.7 Article

Geologic storage of carbon dioxide and enhanced oil recovery. II. Cooptimization of storage and recovery

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 46, 期 11-12, 页码 1941-1956

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2004.09.009

关键词

CO2 sequestration; mobility control; reservoir simulation

向作者/读者索取更多资源

Geologic sequestration of carbon dioxide (CO2) in oil and gas reservoirs is one possibility to reduce the amount Of CO2 released to the atmosphere. Carbon dioxide injection has been used in enhanced oil recovery (EOR) processes since the 1970s; the traditional approach is to reduce the amount Of CO2 injected per barrel of oil produced. For a sequestration process, however, the aim is to maximize both the amount of oil produced and the amount Of CO2 stored. It is not readily apparent how this aim is achieved in practice. In this study, several strategies are tested via compositional reservoir simulation to find injection and production procedures that cooptimize oil recovery and CO2 storage. Flow simulations are conducted on a synthetic, three dimensional, heterogeneous reservoir model. The reservoir description is stochastic in that multiple realizations of the reservoir are available. The reservoir fluid description is compositional and incorporates 14 distinct components. The results show that traditional reservoir engineering techniques such as injecting CO2 and water in sequential fashion, a so-called water-alternating-gas process, are not conducive to maximizing the CO2 stored within the reservoir. A well control process that shuts in (i.e. closes) wells producing large volumes of gas and allows shut in wells to open as reservoir pressure increases is the most successful strategy for cooptimization. This result holds for both immiscible and miscible gas injection. The strategy appears to be robust in that full physics simulations employing multiple realizations of the reservoir model all confirmed that the well control technique produced the maximum amount of oil and simultaneously stored the Most CO2. (c) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据