4.6 Article

Time-dependent quantum transport: A practical scheme using density functional theory

期刊

PHYSICAL REVIEW B
卷 72, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.72.035308

关键词

-

向作者/读者索取更多资源

We present a computationally tractable scheme of time-dependent transport phenomena within open-boundary time-dependent density functional theory. Within this approach all the response properties of a system are determined from the time propagation of the set of occupied Kohn-Sham orbitals under the influence of the external bias. This central idea is combined with an open-boundary description of the geometry of the system that is divided into three regions: left/right leads and the device region (real simulation region). We have derived a general scheme to extract the set of initial states in the device region that will be propagated in time with proper transparent boundary-condition at the device/lead interface. This is possible due to a new modified Crank-Nicholson algorithm that allows an efficient time-propagation of open quantum systems. We illustrate the method in one-dimensional model systems as a first step towards a full first-principles implementation. In particular we show how a stationary current develops in the system independent of the transient-current history upon application of the bias. The present work is ideally suited to study ac transport and photon-induced charge-injection. Although the implementation has been done assuming clamped ions, we discuss how it can be extended to include dissipation due to electron-phonon coupling through the combined simulation of the electron-ion dynamics as well as electron-electron correlations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据