4.6 Article

Novel innate immune functions for galectin-1: Galectin-1 inhibits cell fusion by nipah virus envelope glycoproteins and augments dendritic cell secretion of proinflammatory cytokines

期刊

JOURNAL OF IMMUNOLOGY
卷 175, 期 1, 页码 413-420

出版社

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.175.1.413

关键词

-

资金

  1. NIAID NIH HHS [R01 AI060694, R21 AI059051, AI61824, T32 AI007323, AI06094, F31 AI061824, AI059051, AI07323] Funding Source: Medline
  2. NIGMS NIH HHS [GM63281, R01 GM063281] Funding Source: Medline

向作者/读者索取更多资源

Galectin-1 (gal-1), an endogenous lectin secreted by a variety of cell types, has pleiotropic immunomodulatory functions, including regulation of lymphocyte survival and cytokine secretion in autoimmune, transplant disease, and parasitic infection models. However, the role of gal-1 in viral infections is unknown. Nipah virus (NiV) is an emerging pathogen that causes severe, often fatal, febrile encephalitis. The primary targets of NiV are endothelial cells. NiV infection of endothelial cells results in cell-cell fusion and syncytia formation triggered by the fusion (F) and attachment (G) envelope glycoproteins of NiV that bear glycan structures recognized by gal-1. In the present study, we report that NiV envelope-mediated cell-cell fusion is blocked by gal-1. This inhibition is specific to the Paramyxoviridae family because gal-1 did not inhibit fusion triggered by envelope glycoproteins of other viruses, including two retroviruses and a pox virus, but inhibited fusion triggered by envelope glycoproteins of the related Hendra virus and another paramyxovirus. The physiologic dimeric form of gal-1 is required for fusion inhibition because a monomeric gal-1 mutant had no inhibitory effect on cell fusion. gal-1 binds to specific N-glycans on NiV glycoproteins and aberrantly oligomerizes NiV-F and NiV-G, indicating a mechanism for fusion inhibition. gal-1 also increases dendritic cell production of proinflammatory cytokines such as IL-6, known to be protective in the setting of other viral diseases such as Ebola infections. Thus, gal-1 may have direct antiviral effects and may also augment. the innate immune response against this emerging pathogen.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据