4.7 Article

Oxidative enzymopathies and vascular disease

期刊

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.ATV.0000163846.51473.09

关键词

antioxidants; atherosclerosis; genetic polymorphism; reactive oxygen species

资金

  1. NHLBI NIH HHS [R01 HL61795, HL04399, N01 HV28178, P01 HL55993, R01 HL58796] Funding Source: Medline

向作者/读者索取更多资源

In the vasculature, reactive oxygen species (ROS) generated by both mitochondrial respiration and enzymatic sources serve as integral components of cellular signaling and homeostatic mechanisms. Because ROS are highly reactive biomolecules, the cellular redox milieu is carefully maintained by small-molecule antioxidants and antioxidant enzymes to prevent the deleterious consequences of ROS excess. When this redox balance is perturbed, because of either increased ROS production or decreased antioxidant capacity, oxidant stress is increased in the vessel wall and, if not offset, vascular dysfunction ensues. A number of heritable polymorphisms of pro-oxidant enzymes, including 5-lipoxygenase, cyclooxygenase-2, nitric oxide synthase-3, and NAD(P) H oxidase, have been identified and found to modulate ROS production and, thereby, the risk of atherothrombotic cardiovascular disease in individuals with these genetic polymorphisms. Similarly, heritable deficiency of the antioxidant enzymes catalase, glutathione peroxidases, glutathione-S-transferases, heme oxygenase, and glucose-6-phosphate dehydrogenase favors ROS accumulation, and has been associated with an increased risk of vascular disease. Individually, each of these polymorphisms imposes a state of uncompensated oxidant stress on the vasculature and collectively comprise the oxidative enzymopathies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据