4.6 Article

Aberrant β-catenin signaling in tuberous sclerosis

期刊

AMERICAN JOURNAL OF PATHOLOGY
卷 167, 期 1, 页码 107-116

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S0002-9440(10)62958-6

关键词

-

资金

  1. NCI NIH HHS [R29 CA061889, CA102662, R01 CA061889, R01 CA102662, CA61889] Funding Source: Medline

向作者/读者索取更多资源

The pathology associated with tuberous sclerosis complex (TSC) shows diverse phenotypes that suggest abnormal signaling of multiple pathways. Besides the negative regulatory role of the TSC1/TSC2 proteins on mTOR, we have reported an effect on beta-catenin signaling at the level of the degradation complex in vitro. The TSC1/TSC2 complex associates with GSK3 and Axin and promotes beta-catenin degradation to inhibit Wnt-stimulated TCF/LEF-dependent transcription. Here, we show that beta-catenin and its effectors, cyclin D1 and connexin 43, were up-regulated in TSC-related angiomyolipomas and lymphangioleiomyomatosis. This was supported by the failure of three disease-causing TSC2 missense mutants to inhibit Wnt signaling. Further, the interaction between TSC1/TSC2 and components of the beta-catenin degradation complex was dependent on Wnt stimulation such that binding of tuberin to GSK3 and Axin was reduced in the presence of Wnt whereas the tuberin-Dishevelled interaction was increased. GSK3 activity played a role in regulating the assembly/stability of the degradation complex. Inhibition of GSK3 by lithium chloride reduced its association with TSC1 whereas disruption of GSK3-phosphorylation sites in TSC1 reduced interaction between TSC2 and TSC1. Collectively, our data provide further evidence that beta-catenin signaling plays a role in TSC pathogenesis in vivo and suggest a novel role of GSK3 in modulating the TSC1/TSC2 complex through TSC1 phosphorylation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据