4.6 Article

Physical atomistic kinetic Monte Carlo modeling of Fermi-level effects of species diffusing in silicon

期刊

PHYSICAL REVIEW B
卷 72, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.72.035202

关键词

-

向作者/读者索取更多资源

An accurate physically based Fermi-level modeling approach, amenable to be implemented in an atomistic process simulator, is reported. The atomistic kinetic Monte Carlo method is used for point and extended defects, in conjunction with a quasiatomistic, continuum approach treatment for carrier densities. The model implements charge reactions and electric bias according to the local Fermi level, pairing and break-up reactions between particles, clustering-related dopant deactivation, and Fermi-level-dependent solubility. We derive expressions that can be used as a bridge between the continuum and the atomistic frameworks. We present the implementation of two common dopants, boron and arsenic, using parameters that are in agreement with both ab initio calculations and experimental results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据