3.8 Article

Formulation and processing of novel conductive solution inks in continuous inkjet printing of 3-D electric circuits

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TEPM.2005.852542

关键词

aqueous solution inks; conductive inks; continuous inkjet printing (CIJ); electrical circuits; metallo-organic decomposition (MOD)

向作者/读者索取更多资源

One of the greatest challenges for the inkjet printing electrical circuits is formulation and processing of conductive inks. In the present investigation, two different formulations of particle-free conductive solutions are introduced that are low in cost, easy to deposit, and possess good electrical properties. A novel aqueous solution consisting of silver nitrate and additives is, initially described. This solution demonstrates excellent adherence to glass and polymers and has an electrical resistivity only 2.9 times that of bulk silver after curing. A metallo-organic decomposition (MOD) ink is subsequently introduced. This ink produces a close-packed silver crystal microstructure after low-temperature thermolysis and subsequent high-temperature annealing. The electrical conductance of the final consolidated trace produced with the MOD ink is very close to bulk silver. In addition, the traces produced with the MOD material exhibit excellent wear and fracture resistance. When utilized in a specialized continuous inkjet (CIJ) printing technology system, both particle-free solution inks are able to produce conductive traces in three dimensions. The importance of three-dimensional (3-D) printing of conductive traces is finally discussed in relation to the broad range of applications in the freeform fabrication industry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据