4.7 Article

Cells in fluidic environments are sensitive to flow frequency

期刊

JOURNAL OF CELLULAR PHYSIOLOGY
卷 204, 期 1, 页码 329-335

出版社

WILEY
DOI: 10.1002/jcp.20281

关键词

-

资金

  1. NHLBI NIH HHS [HL67246, HL60407] Funding Source: Medline
  2. NIGMS NIH HHS [GM/HL49039] Funding Source: Medline

向作者/读者索取更多资源

Virtually all cells accommodate to their mechanical environment. In particular, cells subject to flow respond to rapid changes in fluid shear stress (SS), cyclic stretch (CS), and pressure. Recent studies have focused on the effect of pulsatility on cellular behavior. Since cells of many different tissue beds are constantly exposed to fluid flows over a narrow range of frequencies, we hypothesized that an intrinsic flow frequency that is optimal for determining cell phenotype exists. We report here that cells from various tissue beds (bovine aortic endothelial cells (BAEC), rat small intestine epithelial cells (RSIEC), and rat lung epithelia( cells (RLEC)) proliferate maximally when cultured in a perfusion bioreactor under pulsatile conditions at a specific frequency, independent of the applied SS. Vascular endothelial and pulmonary epithelial cell proliferation peaked under 1 Hz pulsatile flow. In contrast, proliferation of gastrointestinal cells, which in their physiological context are subject to no flow or higher wavelength signal, was maximum at 0.125 Hz or under no flow. Moreover, exposure of BAEC to pulsatile flow of varying frequency influenced their nitric oxide synthase activity and prostacyclin production, which reached maximum values at 1 Hz. Notably, the optimal frequencies for the cell types examined correspond to the physiologic operating range of the organs from where they were initially derived. These findings suggest that frequency, independent of shear, is an essential determinant of cell response in pulsatile environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据