4.6 Article

Incorporation of Time-of-Flight Information Reduces Metal Artifacts in Simultaneous Positron Emission Tomography/Magnetic Resonance Imaging A Simulation Study

期刊

INVESTIGATIVE RADIOLOGY
卷 50, 期 7, 页码 423-429

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/RLI.0000000000000146

关键词

-

资金

  1. Bayer Healthcare
  2. Siemens Healthcare
  3. Roche Pharmaceuticals
  4. GE Healthcare

向作者/读者索取更多资源

Objectives This study aimed to describe and evaluate the influence of time-of-flight (TOF) information on metal artifact reduction in positron emission tomography (PET) image quality in clinical simultaneous PET/magnetic resonance (MR) scanning. Materials and Methods A total of 7 patients with various malignant tumors were included and underwent a PET/MR examination after standard PET/computed tomography. Baseline TOF and non-TOF PET images were reconstructed. Next, the TOF and non-TOF PET reconstructions were repeated after the introduction of artificial signal voids in the attenuation map to simulate metal artifacts of various sizes in a range of locations. Three different sizes of signal voids were inserted in the attenuation maps for each location of interest: over the maxilla, humeral head, chest, sternum, thoracic and lumbar spine, as well as the femoral head to replicate clinically relevant metal artifacts. The reconstructed images with the artifacts were then compared with the baseline reconstructed images. The mean percentage error in a region of interest surrounding the simulated artifact was used to compare between TOF and non-TOF images. Further comparison between TOF and non-TOF images was performed using histogram analysis. Results In all cases, the mean percentage error in a region of interest surrounding the simulated artifact was reduced when TOF information was included in the reconstruction. The inclusion of TOF also changes the distribution of smaller errors away from the origin of the artifact. In some anatomical regions, an increase in the number of small errors was noted with TOF, although the differences with non-TOF were minimal. Conclusions Positron emission tomographic imaging benefits from the integration of TOF information in simultaneous PET/MR. The inclusion of TOF information in simultaneous PET/MR imaging reduces errors related to metal artifacts at the site of the artifact.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据