4.2 Article

Numerical simulations of heat transfer and fluid flow problems using an immersed-boundary finite-volume method on nonstaggered grids

期刊

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/10407790590935975

关键词

-

向作者/读者索取更多资源

This article describes the application of the immersed boundary technique for simulating fluid flow and heat transfer problems over or inside complex geometries. The methodology is based on a fractional step method to integrate in time. The governing equations are discretized and solved on a regular mesh with a finite-volume nonstaggered grid technique. Implementations of Dirichlet and Neumann types of boundary conditions are developed and completely validated. Several phenomenologically different fluid flow and heat transfer problems are simulated using the technique considered in this study. The accuracy of the method is second-order, and the efficiency is verified by favorable comparison with previous results from numerical simulations and laboratory experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据