4.7 Article

Climatic and topographic controls on the style and timing of Late Quaternary glaciation throughout Tibet and the Himalaya defined by 10Be cosmogenic radionuclide surface exposure dating

期刊

QUATERNARY SCIENCE REVIEWS
卷 24, 期 12-13, 页码 1391-1411

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.quascirev.2004.10.014

关键词

-

向作者/读者索取更多资源

Temporal and spatial changes in glacier cover throughout the Late Quaternary in Tibet and the bordering mountains are poorly defined because of the inaccessibility and vastness of the region, and the lack of numerical dating. To help reconstruct the timing and extent of glaciation throughout Tibet and the bordering mountains, we use geomorphic mapping and Be-10 cosmogenic radionuclide (CRN) surface dating in study areas in southeastern (Gonga Shan), southern (Karola Pass) and central (Western Nyainqentanggulha Shan and Tanggula Shan) Tibet, and we compare these with recently determined numerical chronologies in other parts of the plateau and its borderlands. Each of the study regions receives its precipitation mainly during the south Asian summer monsoon when it falls as snow at high altitudes. Gonga Shan receives the most precipitation (> 2000 mm a(-1)) while, near the margins of monsoon influence, the Karola Pass receives moderate amounts of precipitation (500-600 mm a(-1)) and, in the interior of the plateau, little precipitation falls on the western Nyainqentanggulha Shan (similar to 300 mm a(-1)) and the Tanggula Shan (400-700 mm a(-1)). The higher precipitation values for the Tanggula Shan are due to strong orographic effects. In each region, at least three sets of moraines and associated landforms are preserved, providing evidence for multiple glaciations. The Be-10 CRN surface exposure dating shows that the formation of moraines in Gonga. Shan occurred during the early-mid Holocene, Neoglacial and Little Ice Age, on the Karola Pass during the Lateglacial, Early Holocene and Neoglacial, in the Nyainqentanggulha Shan date during the early part of the last glacial cycle, global Last Glacial Maximum and Lateglacial, and on the Tanggula Shan during the penultimate glacial cycle and the early part of the last glacial cycle. The oldest moraine succession in each of these regions varies from the early Holocene (Gonga Shan), Lateglacial (Karola Pass), early Last Glacial (western Nyainqentanggulha Shan), and penultimate glacial cycle (Tanggula Shan). We believe that the regional patterns and timing of glaciation reflect temporal and spatial variability in the south Asian monsoon and, in particular, in regional precipitation gradients. In zones of greater aridity, the extent of glaciation has become increasingly restricted throughout the Late Quaternary leading to the preservation of old (> 100 ka) glacial landforms. In contrast, in regions that are very strongly influenced by the monsoon (> 1600 mm a(-1)), the preservation potential of pre-Lateglacial moraine successions is generally extremely poor. This is possibly because Lateglacial and Holocene glacial advances may have been more extensive than early glaciations and hence may have destroyed any landform or sedimentary evidence of earlier glaciations. Furthermore, the intense denudation, mainly by fluvial and mass movement processes, which characterize these wetter environments, results in rapid erosion and re-sedimentation of glacial and associated landforms, which also contributes to their poor preservation potential. (c) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据