4.5 Article

Influence of the alkali metal salt on the properties of solid electrolytes derived from a Lewis acidic polyether

期刊

SOLID STATE IONICS
卷 176, 期 23-24, 页码 1849-1859

出版社

ELSEVIER
DOI: 10.1016/j.ssi.2005.05.014

关键词

polymer electrolytes; anion trapping; lithium salts; ionic conductivity; electrochromic windows

向作者/读者索取更多资源

A polyether containing Lewis acidic boron atoms in its branched chain architecture was synthesised by a condensation reaction of boron trioxide, triethylene glycol monomethyl ether and poly(ethylene glycol), the latter having a molecular weight of 300 g/mol. Electrolytes based on this polymer and several different alkali metal salts were prepared and investigated. The state of the ions in the electrolytes was studied by FTIR spectroscopy, which detected the presence of ion pairs in electrolytes containing lithium triflate and lithium bis(trifluoromethane)sulfonimide (LiTFSI) salt. By thermogravimetry, all the electrolytes except those containing LiCl were found to be stable up to at least 150 degrees C. In general, an increased hardness of the basic anion gave rise to a decrease in the thermal stability. The reason behind this was thought to be an increasing destabilisation of the Lewis acidic boronate esters by interactions with the anions. The ionic conductivity of the electrolytes followed Vogel - Tammann - Fulcher (VTF) relationships, and was consistently found to increase with a decreased hardness of the basic anion. Consequently, the lowest conductivity at 30 degrees C for electrolytes with a salt concentration corresponding to [EO]: [Li] similar to 46 : 1 was measured for LiCl, 4 x 10(-6) S/cm, while the corresponding highest conductivity, 8 x 10(-5) S/cm, was recorded for the LiTFSI electrolyte. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据