4.5 Article

Use of picosecond Kerr-gated Raman spectroscopy to suppress signals from both surface and deep layers in bladder and prostate tissue

期刊

JOURNAL OF BIOMEDICAL OPTICS
卷 10, 期 4, 页码 -

出版社

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.1991848

关键词

Raman spectroscopy; Kerr gating; prostate; bladder

向作者/读者索取更多资源

Raman spectroscopy is an optical technique able to interrogate biological tissues, giving us an understanding of the changes in molecular structure that are associated with disease development. The Kerr-gated Raman spectroscopy technique uses a picosecond pulsed laser as well as fast temporal gating of collected Raman scattered light. Prostate samples for this study were obtained by taking a chip at the transurethral resection of the prostate (TURP), and bladder samples from a biopsy taken at transurethral resection of bladder tumor (TURBT) and TURP. Spectra obtained through the bladder and prostate gland tissue, at different time delays after the laser pulse, clearly show change in the spectra as depth profiling occurs, eventually showing signals from the uric acid cell and urea cell, respectively. We show for the first time, using this novel technique, that we are able to obtain spectra from different depths through both the prostate gland and the bladder. This has major implications in the future of Raman spectroscopy as a tool for diagnosis. With the help of Raman spectroscopy and Kerr gating, it may be possible to pick up the spectral differences from a small focus of adenocarcinoma of the prostate gland in an otherwise benign gland, and also stage the bladder cancers by assessing the base of the tumor post resection. (C) 2005 Society of Photo-Optical Instrumentation Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据