4.5 Article

Analysis of the in vivo functions of Mrp3

期刊

MOLECULAR PHARMACOLOGY
卷 68, 期 1, 页码 160-168

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/mol.104.010587

关键词

-

资金

  1. NCI NIH HHS [CA73728, CA06927] Funding Source: Medline
  2. NIDDK NIH HHS [DK47987, R01 DK047987] Funding Source: Medline

向作者/读者索取更多资源

Multidrug resistance protein 3 (MRP3) is an ATP-binding cassette transporter that is able to confer resistance to anticancer agents such as etoposide and to transport lipophilic anions such as bile acids and glucuronides. These capabilities, along with the induction of the MRP3 protein on hepatocyte sinusoidal membranes in cholestasis and the expression of MRP3 in enterocytes, have led to the hypotheses that MRP3 may function in the body to protect normal tissues from etoposide, to protect cholestatic hepatocytes from endobiotics, and to facilitate bile-acid reclamation from the gut. To elucidate the role of Mrp3 in these processes, the Mrp3 gene (Abcc3) was disrupted by homologous recombination. Homozygous null animals were healthy and physically indistinguishable from wild-type mice. Mrp3(-/-) mice did not exhibit enhanced lethality to etoposide phosphate, although an analysis of transfected human embryonic kidney 293 cells indicated that the potency of murine Mrp3 toward etoposide ( similar to 2.0- to 2.5-fold) is comparable with that of human MRP3. After induction of cholestasis by bile duct ligation, Mrp3(-/-) mice had 1.5-fold higher levels of liver bile acids and 3.1-fold lower levels of serum bilirubin glucuronide compared with ligated wild-type mice, whereas significant differences were not observed between the respective sham-operated mice. Bile acid excretion, pool size, and fractional turnover rates were similar in Mrp3(-/-) and wild-type mice. We conclude that Mrp3 functions as an alternative route for the export of bile acids and glucuronides from cholestatic hepatocytes, that the pump does not play a major role in the enterohepatic circulation of bile acids and that the lack of chemosensitivity is probably attributable to functional redundancy with other pumps.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据