4.8 Article

Characterization of heterologous multigene operons in transgenic chloroplasts. Transcription, processing, and translation

期刊

PLANT PHYSIOLOGY
卷 138, 期 3, 页码 1746-1762

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.105.063040

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM 63879] Funding Source: Medline

向作者/读者索取更多资源

The first characterization of transcriptional, posttranscriptional, and translational processes of heterologous operons expressed via the tobacco (Nicotiana tabacum) chloroplast genome is reported here. Northern-blot analyses performed on chloroplast transgenic lines harboring seven different heterologous operons revealed that polycistronic mRNA was the predominant transcript produced. Despite the lack of processing of such polycistrons, large amounts of foreign protein accumulation was observed in these transgenic lines, indicating abundant translation of polycistrons. This is supported by polysome fractionation assays, which allowed detection of polycistronic RNA in lower fractions of the sucrose gradients. These results show that the chloroplast posttranscriptional machinery can indeed detect and translate multigenic sequences that are not of chloroplast origin. In contrast to native transcripts, processed and unprocessed heterologous polycistrons were stable, even in the absence of 3' untranslated regions (UTRs). Unlike native 5' UTRs, heterologous secondary structures or 5' UTRs showed efficient translational enhancement independent of cellular control. Abundant read-through transcripts were observed in the presence of chloroplast 3' UTRs but they were efficiently processed at introns present within the native operon. Heterologous genes regulated by the psbA (the photosystem II polypeptide D1) promoter, 5' and 3' UTRs have greater abundance of transcripts than the endogenous psbA gene because transgenes were integrated into the inverted repeat region. Addressing questions about polycistrons, and the sequences required for their processing and transcript stability, are essential in chloroplast metabolic engineering. Knowledge of such factors would enable engineering of foreign pathways independent of the chloroplast complex posttranscriptional regulatory machinery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据