4.4 Article

Experimental measurement of Au M-band flux in indirectly driven double-shell implosions -: art. no. 072701

期刊

PHYSICS OF PLASMAS
卷 12, 期 7, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.1927543

关键词

-

向作者/读者索取更多资源

Indirectly driven double-shell implosions are being investigated as a possible noncryogenic path to ignition on the National Ignition Facility [J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, Laser Focus World 30, 75 (1994)]. In recent double-shell experiments, the inner shell trajectory was shown to exhibit a strong sensitivity to the temporal history of the M-band (2-5 keV) radiation emitted from the Au hohlraum wall. A large time-dependent discrepancy was observed between measurement and simulation of the x-ray flux in this range. In order to better characterize the radiation environment seen in these implosions, an experimental campaign was conducted on the Omega laser. A number of diagnostics were used to measure both the temporal and spectral nature of the M-band flux. Results were obtained from an absolutely calibrated 12-channel filtered x-ray diode array (Dante) as well as two streaked crystal spectrometers and an absolutely calibrated time-integrated spectrometer (Henway). X-ray backlighting was also used to directly measure the effect of M-band radiation on the trajectory of the inner shell. The data from all diagnostics are shown to be in excellent agreement and provide a consistent picture of the M-band flux. These results are being used to constrain and improve the simulation of hohlraum-generated M-band radiation that will be necessary for the design of future double-shell implosions employing higher-Z inner shells. (C) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据