4.4 Article

Identification and Molecular Characterization of a Novel DyP-Type Peroxidase from Pseudomonas aeruginosa PKE117

期刊

APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
卷 166, 期 3, 页码 774-785

出版社

SPRINGER
DOI: 10.1007/s12010-011-9466-x

关键词

DyP-type peroxidase; Pseudomonas aeruginosa; Cloning; Expression; Characterization

资金

  1. National Science Foundation of China [30700010]
  2. Eleventh Five-Year Plan National Key Technology R&D Program of China [2008BADC4B1J, 2006BAD07A01]

向作者/读者索取更多资源

A new DyP-type peroxidase from Pseudomonas aeruginosa PKE117 was identified and characterized. The dypPa was first identified via sequence analysis and then cloned in Escherichia coli. Subsequently, the recombinant protein DyPPa was expressed and purified. Its DNA sequence analysis revealed an open reading frame of 897 bp, encoding a protein monomer of 299 amino acid residues with isoelectric point 4.62. According to SDS-PAGE analysis and FPLC result, DyPPa mainly existed as homodimer (64 kDa). DyPPa displayed typical heme absorbance of Soret band, with an Rz value of 1.18. Inductively coupled plasma-atomic absorption spectrum data also indicated DyPPa contained iron. Multiple amino acid sequence alignment of DyPPa with other members of the DyP-type peroxidases family showed the presence of conserved D139, H210, and R227 amino acids and GXXDG motifs, which were commonly shared by the DyP-type peroxidase family. Although the primary structure homology between DyPPa and other family members was very low, their secondary and tertiary structure displayed high homology, which explained the high decolorizing activity of DyPPa. Specifically, DyPPa displayed a good thermal stability and maximal activity on Reactive blue 5 under pH 3.5. Therefore, it was proposed that DyPPa, with a wide range of substrate specificity, was a novel member of the DyP-type peroxidases family.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据