4.3 Article Proceedings Paper

Transport of ions and biomolecules through single asymmetric nanopores in polymer films

出版社

ELSEVIER
DOI: 10.1016/j.nimb.2005.03.265

关键词

nanopores; ion channels; transport processes; DNA detection

向作者/读者索取更多资源

Single conical nanopores in polymer foils show 'rectifying' diode-like current-voltage (I-V) characteristics, with preferential cation flow in the direction from the narrow to the wide opening [P. Apel, Y.E. Korchev, Z. Siwy, R. Spohr, M. Yoshida, Nucl. Instr. and Meth. B 184 (2001) 337-346, Z. Siwy, D. Dobrev, R. Neumann, C. Trautmann, K. Voss, Appl. Phys. A 76 (2003) 781-785]. To produce single-pore membranes, we irradiated polymer films (polyethylene terephthalate and polyimide) with single heavy ions (using kinetic energies in the GeV range) and subsequently performed asymmetric chemical track-etching. The resulting conical pores had narrow openings of 4-20 nm. The I-V curves of these pores were measured in aqueous KCl solutions of various concentrations and pH values, and it was found that both parameters influence the rectification properties of the pores. For decreasing concentrations, down to 0.1 M, the degree of rectification increases, as predicted by a recently proposed model [Z. Siwy, A. Fulinski, Phys. Rev. Lett. 89 (2002) 198103], however, as the concentration decreases further, the rectification unexpectedly begins to decrease again. We suspect that this is due to conformation changes occurring in the pore. Also, our results have shown that the pores exhibit a non-classical conductance versus electrolyte concentration characteristic, having elevated conductances at low concentrations, for which we propose an explanation based on surface conductivity. Finally, we present an application of the polyimide conical nanopores as single-molecule DNA sensors, with results demonstrating their ability to detect individual plasmid DNA molecules. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据