4.5 Article

Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus:: three-dimensional kinematics during propulsion and maneuvering

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 208, 期 14, 页码 2753-2763

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.01706

关键词

swimming; maneuvering; locomotion; dorsal fin; anal fin; kinematics; stability; bluegill sunfish; Lepomis macrochirus

类别

向作者/读者索取更多资源

Dorsal and anal fins are median fins located above and below the centre of mass of fishes, each having a moment arm relative to the longitudinal axis. Understanding the kinematics of dorsal and anal fins may elucidate how these fins are used in concert to maintain and change fish body position and yet little is known about the functions of these fins. Using three synchronized high-speed cameras (500 frames s(-1)) we studied the three-dimensional kinematics of dorsal and anal fins during steady swimming (0.5-2.5 TL s(-1), where TL=total length) and during slow speed maneuvers (0.5 TL s(-1)). By digitizing points along every other fin ray in the soft-rayed portion of the fins we were able to determine not only the movement of the fin surface but also the curvature of individual fin rays and the resulting fin surface shape. We found that dorsal and anal fins begin oscillating, in phase, at steady swimming speeds above 1.0 TL s(-1) and that maximum lateral displacement of the trailing edge of the fins as well as fin area increase with increasing steady swimming speed. Differences in area, lateral displacement and moment arm between the dorsal and anal fin suggest that dorsal and anal fins produce balancing torques during steady swimming. During maneuvers, fin area is maximized and mean lateral excursion of both fins is greater than during steady swimming, with large variation among maneuvers. Fin surface shape changes dramatically during maneuvers. At any given point in time the spanwise (base to tip) curvature along fin rays can differ between adjacent rays, suggesting that fish have a high level of control over fin surface shape. Also, during maneuvers the whole surface of both dorsal and anal fins can be bent without individual fin rays exhibiting significant curvature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据