4.7 Article

Design of a specific peptide tag that affords covalent and site-specific enzyme immobilization catalyzed by microbial transglutaminase

期刊

BIOMACROMOLECULES
卷 6, 期 4, 页码 2299-2304

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm050193o

关键词

-

向作者/读者索取更多资源

Transglutaminase-mediated site-specific and covalent immobilization of an enzyme to chemically modified a,garose was explored. Using Escherichia coli alkaline phosphatase (AP) as a model, two designed specific peptide tags containing a reactive lysine (Lys) residue with different length Gly-Ser linkers for microbial transglutaminase (MTG) were genetically attached to N- or C-termini. For solid support, agarose gel beads were chemically modified with beta-casein to display reactive glutamine (Gln) residues on the support surface. Recombinant APs were enzymatically and covalently immobilized to casein-grafted agarose beads. Immobilization by MTG markedly depended on either the position or the length of the peptide tags incorporated to AP, suggesting steric constraint upon enzymatic immobilization. Enzymatically immobilized AP showed comparable catalytic turnover (k(cat)) to the soluble counterpart and comparable operational stability with chemically immobilized AP. These results indicate that attachment of a suitable specific peptide tag to the right position of a target protein is crucial for MTG-inediated formulation of highly active immobilized proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据