4.8 Article

Biodegradable cationic PEG-PEI-PBLG hyperbranched block copolymer: synthesis and micelle characterization

期刊

BIOMATERIALS
卷 26, 期 20, 页码 4209-4217

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2004.11.002

关键词

polyethylenimine; biodegradable; hyperbranched; amphiphilic copolymer; micelle; complex micelle; drug delivery

向作者/读者索取更多资源

A novel amphiphilic biodegradable cationic hyperbranched poly(ethylene glycol)-polyethylenimine-poly(gamma-benzyl L-glutamate) (PEG-PEI-PBLG) block copolymer was successfully synthesized by ring-opening polymerization (ROP) of N-carboxyanhydride of gamma-benzyl-L-glutamate (BLG-NCA) with PEG-PEI as a macroinitiator. PEG-PEI was firstly prepared by coupling of PEG and PEI using hexamethylene diisocyanate (HMDI). The structural properties of PEG-PEI-PBLG copolymers were confirmed by H-1 NMR and GPC. The copolymers were found to be self-assembled in water with critical micelle concentration (CMC) in the range of 0.00368-0.0125 g/l and high hydrophobic micelle core. The micelle size and CMC obviously depended on the hydrophobic block content in the copolymer and the ionic state of the PEI block. The CMC decreased with the increase in the PBLG block content. The decrease of micelle size and the increase of CMC simultaneously occurred with the protonated degree of PEI block by addition of HCl solution. ESEM and Gel retardation assay showed that the cationic micelles had ability to encapsulate plasmid DNA. The copolymer has potential medical applications in drug and gene delivery. (C) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据