4.6 Article

Endoplasmic reticulum stress induces Wfs1 gene expression in pancreatic β-cells via transcriptional activation

期刊

EUROPEAN JOURNAL OF ENDOCRINOLOGY
卷 153, 期 1, 页码 167-176

出版社

BIOSCIENTIFICA LTD
DOI: 10.1530/eje.1.01945

关键词

-

向作者/读者索取更多资源

Objective: The WFS1 gene encodes an endoplasmic reticulum (ER) membrane-embedded protein. Homozygous WFS1 gene mutations cause Wolfram syndrome, characterized by insulin-deficient diabetes mellitus and optic atropy. Pancreatic beta-cells are selectively lost from the patient's islets. ER localization suggests that WFS1 protein has physiological functions in membrane trafficking, secretion, processing and/or regulation of ER calcium homeostasis. Disturbances or overloading of these functions induces ER stress responses, including apoptosis. We speculated that WFS1 protein might be involved in these ER stress responses. Design and methods: Islet expression of the Wfs1 protein was analyzed immunohistochemically. Induction of Wfs1 upon ER stress was examined by Northern and Western blot analyses using three different models: human skin fibroblasts, mouse pancreatic beta-cell-derived MIN6 cells, and Akita mouse-derived Ins2(96Y/Y) insulinoma cells. The human WFS I gene promoter-luciferase reporter analysis was also conducted. Result: Islet beta-cells were the major site of Wfs1 expression. This expression was also found in delta-cells, but not in alpha-cells. WFS1 expression was transcriptionally up-regulated by ER stress-inducing chemical insults. Treatment of fibroblasts and MlN6 cells with thapsigargin or tunicamycin increased WFS1 mRNA. WFS1 protein also increased in response to thapsigargin treatment in these cells. WFS1 gene expression was also increased in Ins2(96Y/Y) insulinoma cells. In these cells, ER stress was intrinsically induced by mutant insulin expression. The WFS1 gene promoter-luciferase reporter system revealed that the human WFS1 promoter was activated by chemically induced ER stress in MIN6 cells, and that the promoter was more active in Ins2(96Y/Y) cells than Ins2(wild/wild) cells. Conclusion: Wfs1 expression, which is localized to beta- and delta-cells in pancreatic islets, increases in response to ER stress, suggesting a functional link between Wfs1 and ER stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据