4.5 Article

Minocycline inhibits LPS-induced retinal microglia activation

期刊

NEUROCHEMISTRY INTERNATIONAL
卷 47, 期 1-2, 页码 152-158

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuint.2005.04.018

关键词

microglia; retina; neurodegenerative disease; LPS; IL-lbeta; TNF-alpha; NO; minocycline

向作者/读者索取更多资源

Retinal neurode-enerative disease involves an inflammatory response in the retina characterized by an increase in inflammatory cytokines and activation of microglia. The degree of microglia activation may influence the extent of retinal injury following an inflammatory stimulus. Cytokines released by activated microglia regulate the influx of inflammatory cells to the damaged area. Thus, a therapeutic strategy to reduce cytokine expression in microglia would be neuroprotective. Minocycline, a semisynthetic tetracycline derivative, is known to protect rodent brain from ischemia and to inhibit microglial activation. In this study, we activated retinal microglia in culture with lipopolysaccharide (LPS) and attempted to determine whether minocycline could reduce the production of cytokines from activated microglia at both gene and protein levels. Changes in inflammatory cytokines, TNF-alpha and IL-1beta, were measured by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) in the presence or absence of LPS. We also measured the levels of nitric oxide (NO) by the nitrate reductase method under similar conditions. LPS treatment induced a significant upregulation of the mRNA and release of TNF-alpha, IL-1beta, and NO from retinal microglia. Minocycline inhibited these releases. Thus, minocycline might exert its antiinflammatory effect on microglia by inhibiting the expression and release of TNF-alpha, IL-lbeta, and NO. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据