4.5 Article

The survival of motor neurons protein determines the capacity for snRNP assembly: Biochemical deficiency in spinal muscular atrophy

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 25, 期 13, 页码 5543-5551

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.25.13.5543-5551.2005

关键词

-

向作者/读者索取更多资源

Reduction of the survival of motor neurons (SMN) protein levels causes the motor neuron degenerative disease spinal muscular atrophy, the severity of which correlates with the extent of reduction in SMN. SMN, together with Gemins 2 to 7, forms a complex that functions in the assembly of small nuclear ribonucleoprotein particles (snRNPs). Complete depletion of the SMN complex from cell extracts abolishes snRNP assembly, the formation of heptameric Sm cores on snRNAs. However, what effect, if any, reduction of SMN protein levels, as occurs in spinal muscular atrophy patients, has on the capacity of cells to produce snRNPs is not known. To address this, we developed a sensitive and quantitative assay for snRNP assembly, the formation of high-salt- and heparin-resistant stable Sm cores, that is strictly dependent on the SMN complex. We show that the extent of Sm core assembly is directly proportional to the amount of SMN protein in cell extracts. Consistent with this, pulse-labeling experiments demonstrate a significant reduction in the rate of snRNP biogenesis in low-SMN cells. Furthermore, extracts of cells from spinal muscular atrophy patients have a lower capacity for snRNP assembly that corresponds directly to the reduced amount of SMN. Thus, SMN determines the capacity for snRNP biogenesis, and our findings provide evidence for a measurable deficiency in a biochemical activity in cells from patients with spinal muscular atrophy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据