4.7 Article

Stimulation of soluble guanylate cyclase slows progression in anti-thy1-induced chronic glomerulosclerosis

期刊

KIDNEY INTERNATIONAL
卷 68, 期 1, 页码 47-61

出版社

ELSEVIER SCIENCE INC
DOI: 10.1111/j.1523-1755.2005.00380.x

关键词

soluble guanylate cyclase; cGMP; Bay 41-2272; TGF-beta 1; fibrosis; progression

向作者/读者索取更多资源

Background. A critical role of soluble guanylate cyclase and nitric oxide-dependent cyclic 3',5'-guanosine monophosphate (cGMP) production for glomerular matrix expansion has recently been documented in a rat model of acute anti-thy1 glomerulonephritis. The present study analyzes the renal activity of the nitric oxide-cGMP signaling cascade in and the effect of the specific soluble guanylate cyclase stimulator Bay 41-2272 on a progressive model of anti-thy1-induced chronic glomerulosclerosis. Methods. Anti-thy1 glomerulosclerosis was induced by injection of anti-thy1 antibody into uninephrectomized rats. One week after disease induction, animals were randomly assigned to chronic glomerulosclerosis, chronic glomerulosclerosis plus Bay 41-2272 (10 mg/kg body weight/day) or chronic glomerulosclerosis plus hydralazine (15 mg/kg body weight/day). In week 16, analysis included effects on systolic blood pressure, proteinuria, kidney function, glomerular and tubulointerstitial matrix protein accumulation, expression of transforming growth factor-beta 1 (TGF-beta 1), fibronectin and plasminogen activator inhibitor type 1 (PAI-1), macrophage infiltration, cell proliferation, basal and nitric oxide-stimulated cGMP production as well as tubulointerstitial mRNA expression of alpha 1 and beta 1 soluble guanylate cyclase. Results. The moderately elevated systolic blood pressure seen in the chronic glomerulosclerosis group was comparably decreased by both treatments. Compared to normal controls, soluble guanylate cyclase mRNA expression and nitric oxide-stimulated cGMP production were up-regulated in the tubulointerstitium of the untreated chronic glomerulosclerosis animals, while its activity was decreased in glomeruli. Bay 41-2272 treatment enhanced glomerular and tubulointerstitial nitric oxide-cGMP signaling significantly. This went along with markedly reduced glomerular and tubulointerstitial macrophage infiltration, number of proliferating cells, matrix expression and accumulation, as well as improved kidney function. In contrast, hydralazine therapy did not significantly affect renal nitric oxide-cGMP signaling, macrophage number, cell proliferation, matrix protein expression and accumulation. Conclusion. Glomerular and tubulointerstitial soluble guanylate cyclase activity are discordantly altered in anti-thy1-induced chronic glomerulosclerosis. Stimulation of soluble guanylate cyclase signaling by Bay 41-2272 limits the progressive course of this model toward tubulointerstitial fibrosis and impaired renal function at least in part in a blood pressure-independent manner. The results suggest that soluble guanylate cyclase activation counteracts fibrosis and progression in chronic renal disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据