4.7 Article

Application of metabolome data in functional genomics: A conceptual strategy

期刊

METABOLIC ENGINEERING
卷 7, 期 4, 页码 302-310

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymben.2005.05.003

关键词

functional genomics; metabolome; silent mutations; lin-log kinetics; mass spectrometry; flux analysis; elasticity

向作者/读者索取更多资源

A gene with yet unknown physiological function can be studied by changing its expression level followed by analysis of the resulting phenotype. This type of functional genomics study can be complicated by the occurrence of 'silent mutations', the phenotypes of which are not easily observable in terms of metabolic fluxes (e.g., the growth rate). Nevertheless, genetic alteration may give rise to significant yet complicated changes in the metabolome. We propose here a conceptual functional genomics strategy based on microbial metabolome data, which identifies changes in in vivo enzyme activities in the mutants. These predicted changes are used to formulate hypotheses to infer unknown gene functions. The required metabolome data can be obtained solely from high-throughput mass spectrometry analysis, which provides the following in vivo information: (1) the metabolite concentrations in the reference and the mutant strain; (2) the metabolic fluxes in both strains and (3) the enzyme kinetic parameters of the reference strain. We demonstrate in silico that changes in enzyme activities can be accurately predicted by this approach, even in 'silent mutants'. (c) 2005 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据