4.7 Article

A simple two-layer zone model on mechanical exhaust in an atrium

期刊

BUILDING AND ENVIRONMENT
卷 40, 期 7, 页码 869-880

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.buildenv.2004.08.018

关键词

zone model; mechanical exhaust; make-up air positions; CFD simulations

向作者/读者索取更多资源

Provision of make-up air is essential in designing mechanical exhaust system in a compartment. There are always problems in determining the inlet positions for supplying make-up air. In this paper, a zone model for studying the effect of different positions of make-up air supply on the performance of a mechanical exhaust system in an atrium will be developed. Traditional two-layer approach with an upper smoke layer and a lower air layer will be assumed. Three scenarios of extraction with different relative positions of the air inlet are studied. These are scenarios with the smoke layer interface lying above, within, and below the air inlet. Conservation of mass and energy are considered for each scenario to study the smoke filling process. Transient variations of smoke layer temperature and interface height will be predicted under different fire sizes, exhaust rates and make-up air conditions. Full-scale burning tests in an atrium were conducted to justify the predicted results. In addition, results predicted by this zone model will also be compared with those predicted by Computational Fluid Dynamics (CFD) with the software Fire Dynamics Simulator FDS version 3.1; and another zone model CFAST version 5.0.1. It is observed that the predicted results from this new zone model agreed well with experiments and CFD results. However, results predicted by CFAST deviated from experiments for the scenario with the smoke layer interface lying below the air inlet. (c) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据