4.6 Article

Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications -: art. no. 011110

期刊

APPLIED PHYSICS LETTERS
卷 87, 期 1, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.1993749

关键词

-

向作者/读者索取更多资源

We demonstrate a 0.25% tensile strained Ge p-i-n photodetector on Si platform that effectively covers both C and L bands in telecommunications. The direct band edge of the Ge film has been pushed from 1550 to 1623 nm with 0.25% tensile strain, enabling effective photon detection in the whole L band. The responsivities of the device at 1310, 1550, and 1620 nm are 600, 520, and 100 mA/W under 0 V bias, which can be further improved to 980, 810, and 150 mA/W with antireflection coating based on calculations. Therefore, the device covers the whole wavelength range used in telecommunications. The responsivities at 1310 and 1550 nm are comparable to InGaAs photodetectors currently used in telecommunications. In the spectrum range of 1300-1650 nm, maximum responsivity was already achieved at 0 V bias because carrier transit time is much shorter than carrier recombination life time, leading to similar to 100% collection efficiency even at 0 V bias. This is a desirable feature for low voltage operation. The absorption coefficients of 0.25% tensile strained Ge in the L band have been derived to be nearly an order of magnitude higher than bulk Ge. The presented device is compatible with conventional Si processing, which enables monolithic integration with Si circuitry. (c) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据