4.6 Article

The extracellular zinc-sensing receptor mediates intercellular communication by inducing ATP release

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2005.05.036

关键词

zinc-sensing receptor; extracellular cation-sensing receptor; desensitization; GPCR

向作者/读者索取更多资源

Taste and salivary secretion disorders have been linked to zinc deficiency, indeed zinc is found in secretory granules in the salivary gland. The signaling role for the zinc release in this tissue, however, is poorly understood. Here, we address the signaling pathways and physiological role of the zinc-sensing receptor, ZnR, in the ductal salivary gland cell line, HSY. Exposure of these cells to zinc triggered intracellular Ca2+ release from thapsigargin-sensitive stores. The G alpha q inhibitor, YM-254890 (1 mu M), eliminated the Zn2+-dependent Ca2+ response, demonstrating that ZnR is a G alpha q-coupled receptor. Dose-response curves yielded an apparent K-0.5 of 36 ltM and a Hill coefficient of 7 in the absence of extracellular Ca2+, and K-0.5 of 55 mu M with a Hill coefficient or 3 in its presence. This indicates that although Zn2+ is essential for ZnR activation, Ca2+ may affect the receptor co-operativity. The homologous desensitization pattern of ZnR was characterized by pre-exposure of cells to Zn2+ at concentrations found to activate the receptor. Re-exposure of cells to Zn2+ elicited an attenuated Zn2+-dependent Ca2+ response for at least 3 h, indicating that the ZnR is strongly desensitized by Zn2+. Finally, we studied the paracrine affects of ZnR using a co-culture consisting of the HSY cells and vascular smooth muscle cells (VSMCs). While no Zn2+-dependent Ca2+ release was observed in VSMC alone, application of Zn2+ to the co-culture induced a Ca2+ rise in both HSY cells and VSMC. This Ca2+ rise was inhibited by the ATP scavenger, apyrase. Taken together, our results demonstrate that ZnR activity is monitored in salivary cells and is modulated by extracellular Ca2+. We further show that ZnR enhances secretion of ATP, thereby linking zinc to key signaling pathways involved in modification of salivary secretions by the ductal cells. (c) 2005 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据