4.7 Article

High-resolution neutron-scattering study of slow dynamics of surface water molecules in zirconium oxide

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 123, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1949171

关键词

-

向作者/读者索取更多资源

We have performed a quasielastic neutron-scattering experiment on backscattering spectrometer with sub-mu eV resolution to investigate the slow dynamics of surface water in zirconium oxide using the sample studied previously with a time-of-flight neutron spectrometer [E. Mamontov, J. Chem. Phys. 121, 9087 (2004)]. The backscattering measurements in the temperature range of 240-300 K have revealed a translational dynamics slower by another order of magnitude compared to the translational dynamics of the outer hydration layer observed in the time-of-flight experiment. The relaxation function of this slow motion is described by a stretched exponential with the stretch factors between 0.8 and 0.9, indicating a distribution of the relaxation times. The temperature dependence of the average residence time is non-Arrhenius, suggesting that the translational motion studied in this work is more complex than surface jump diffusion previously observed for the molecules of the outer hydration layer. The observed slow dynamics is ascribed to the molecules of the inner hydration layer that form more hydrogen bonds compared to the molecules of the outer hydration layer. Despite being slower by two orders of magnitude, the translational motion of the molecules of the inner hydration layer may have more in common with bulk water compared to the outer hydration layer, the dynamics of which is slower than that of bulk water by just one order of magnitude. (c) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据