4.7 Article

Mean flow and turbulence in vegetated open channel flow

期刊

WATER RESOURCES RESEARCH
卷 41, 期 7, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2004WR003475

关键词

-

向作者/读者索取更多资源

[1] Vegetation affects the mean and turbulent flow structure in surface water bodies, thus impacting the local transport processes of contaminants and sediments. The present paper explores the capability of two different mathematical models to predict fully developed one-dimensional open channel flow in the presence of rigid, complex-shaped vegetation with leaves, submerged or emergent. The flow is described by applying two different turbulence closure schemes, both of which are based on the Boussinesq eddy viscosity model: a suitably modified k - epsilon model and a two-layer model based on the mixing length approach. To describe the turbulence structure within and above the canopy a turbulent kinetic energy budget equation was added to the two-layer model. The results of the models were compared with experimental data where simple cylinders, plastic plant prototypes, or real plants, all arranged in a scattered pattern, were employed. Since good agreement between the results of the models and measurements was found in comparing velocity and turbulent shear stress, the models could potentially be used to assess vegetative resistance. Significant disagreement was found when comparing measured and computed eddy viscosity distributions, streamwise turbulence intensity, and most of the terms comprising the turbulent kinetic energy budget.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据