4.6 Article

DdvK, a Novel Major Facilitator Superfamily Transporter Essential for 5,5 '-Dehydrodivanillate Uptake by Sphingobium sp Strain SYK-6

期刊

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.01314-18

关键词

Sphingobium; lignin; MFS transporter; MarR-type transcriptional regulator; 5,5 '-dehydrodivanillate; 2-pyrone-4,6-dicarboxylate

资金

  1. Institute for Fermentation, Osaka
  2. JSPS KAKENHI [15H04473]

向作者/读者索取更多资源

The microbial conversion of lignin-derived aromatics is a promising strategy for the industrial utilization of this large biomass resource. However, efficient application requires an elucidation of the relevant transport and catabolic pathways. In Sphingobium sp. strain SYK-6, most of the enzyme genes involved in 5,5'-dehydrodivanillate (DDVA) catabolism have been characterized, but the transporter has not yet been identified. Here, we identified SLG_07710 (ddvK) and SLG_07780 (ddvR), genes encoding a putative major facilitator superfamily (MFS) transporter and MarR-type transcriptional regulator, respectively. A ddvK mutant of SYK-6 completely lost the capacity to grow on and convert DDVA. DdvR repressed the expression of the DDVA O-demethylase oxygenase component gene (ligXa), while DDVA acted as the gene inducer. A DDVA uptake assay was developed by employing this DdvR-controlled ligXa transcriptional regulatory system. A Sphingobium japonicum UT26S transformant expressing ddvK acquired DDVA uptake capacity, indicating that ddvK encodes the DDVA transporter. DdvK, probably requiring the proton motive force, was suggested to be a novel MFS transporter on the basis of the amino acid sequence similarity. Subsequently, we evaluated the effects of ddvK overexpression on the production of the DDVA metabolite 2-pyrone-4,6-dicarboxylate (PDC), a building block of functional polymers. A SYK-6 mutant of the PDC hydrolase gene (liO) cultured in DDVA accumulated PDC via 5-carboxyvanillate and grew by utilizing 4-carboxy-2-hydroxypenta-2,4-dienoate. The introduction of a ddyK-expression plasmid into a high mutant increased the growth rate in DDVA and the amounts of DDVA converted and PDC produced after 48 h by 1.35- and 1.34-fold, respectively. These results indicate that enhanced transporter gene expression can improve metabolite production from lignin derivatives. IMPORTANCE The bioengineering of bacteria to selectively transport and metabolize natural substrates into specific metabolites is a valuable strategy for industrial-scale chemical production. The uptake of many substrates into cells requires specific transport systems, and so the identification and characterization of transporter genes are essential for industrial applications. A number of bacterial major facilitator super-family transporters of aromatic acids have been identified and characterized, but many transporters of lignin-derived aromatic acids remain unidentified. The efficient conversion of lignin, an abundant but unutilized aromatic biomass resource, to value-added metabolites using microbial catabolism requires the characterization of transporters for lignin-derived aromatics. In this study, we identified the transporter gene responsible for the uptake of 5,5'-dehydrodivanillate, a lignin-derived biphenyl compound, in Sphingobium sp. strain SYK-6. In addition to characterizing its function, we applied this transporter gene to the production of a value-added metabolite from 5,5'-dehydrodivanillate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据