4.6 Article

Translocation of dynorphin neuropeptides across the plasma membrane -: A putative mechanism of signal transmission

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 280, 期 28, 页码 26360-26370

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M412494200

关键词

-

向作者/读者索取更多资源

Several peptides, including penetratin and Tat, are known to translocate across the plasma membrane. Dynorphin opioid peptides are similar to cell-penetrating peptides in a high content of basic and hydrophobic amino acid residues. We demonstrate that dynorphin A and big dynorphin, consisting of dynorphins A and B, can penetrate into neurons and non-neuronal cells using confocal fluorescence microscopy/immunolabeling. The peptide distribution was characterized by cytoplasmic labeling with minimal signal in the cell nucleus and on the plasma membrane. Translocated peptides were associated with the endoplasmic reticulum but not with the Golgi apparatus or clathrin-coated endocytotic vesicles. Rapid entry of dynorphin A into the cytoplasm of live cells was revealed by fluorescence correlation spectroscopy. The translocation potential of dynorphin A was comparable with that of transportan-10, a prototypical cell-penetrating peptide. A central big dynorphin fragment, which retains all basic amino acids, and dynorphin B did not enter the cells. The latter two peptides interacted with negatively charged phospholipid vesicles similarly to big dynorphin and dynorphin A, suggesting that interactions of these peptides with phospholipids in the plasma membrane are not impaired. Translocation was not mediated via opioid receptors. The potential of dynorphins to penetrate into cells correlates with their ability to induce non-opioid effects in animals. Translocation across the plasma membrane may represent a previously unknown mechanism by which dynorphins can signal information to the cell interior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据