4.7 Article

Novel membrane and device for vacuum membrane distillation-based desalination process

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 257, 期 1-2, 页码 60-75

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.memsci.2004.08.040

关键词

membrane distillation; fiber membranes; composite membrane; microporous membrane coating; rectangular cross flow hollow fiber membrane module

向作者/读者索取更多资源

In vacuum membrane distillation (VMD) process for desalination, water vapor flux is strongly affected by the hot brine heat transfer coefficient and membrane mass transfer coefficient. The VMD process has been studied here using porous hydrophobic polypropylene hollow fibers having three different dimensions, two different wall thicknesses and pore sizes. The outside surface of the hollow fibers has been coated with a variety of porous/microporous plasmapolymerized silicone fluoropolymer coatings. A large number of rectangular modules having the hot brine in cross flow over the outside of the fibers and vacuum on the fiber bore side have been investigated for their VMD performances to hot brine (1% NaCl) over a brine temperature range of 60-90 degrees C. Studies were carried out with hot water as well; further hot water flow in the tube side and vacuum in the shell side were also implemented. The shell-side Reynolds number was varied between 9 and 95. Module MXFR #3 containing larger size fibers having a much more open coating and larger pore size yielded at a high Reynolds number a water vapor flux as high as 71 kg/m(2) h from a 85 degrees C hot feed in cross flow. The temperature polarization was reduced considerably with the temperature polarization coefficient varying between 0.93 and 0.99. Zukauskas equation for heat transfer coefficient in cross flow over a tube bank allows one to predict the water vapor flux behavior over a wide range of Reynolds number of the shell-side brine provided an empirically determined membrane mass transfer coefficient is employed. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据