4.6 Article

Doping of spray-pyrolyzed ZnO thin films through direct diffusion of indium: Structural optical and electrical studies

期刊

JOURNAL OF APPLIED PHYSICS
卷 98, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1985967

关键词

-

向作者/读者索取更多资源

Effect of thermal diffusion of indium in ZnO thin films, prepared using spray pyrolysis technique, is discussed. ZnO:In films were characterized using different techniques such as x-ray diffraction (XRD), photoluminescence, electrical resistivity measurements, and optical absorption and transmission. The XRD analysis showed that all the films had a preferred (002) orientation. There was no considerable change in peak height or full width at half maximum, due to the variation in doping percentage. Peak positions corresponding to (002) and (101) planes were slightly shifted to lower 2 theta values. Optical band gap also decreased slightly with indium concentration, and for higher indium concentration percentage of transmission reduced very much. Drastic decrease in resistivity was observed and two activation energies (30 and 15 meV) were obtained for the doped samples. These levels were identified as due to zinc interstitials and/or due to indium at zinc lattice and impurity related defect levels. Photoluminescence measurements gave two emissions. In this, one was the near band-edge (NBE) emission and the other was the blue-green emission. As doping concentration increased, the NBE emission shifted to higher wavelength while the blue-green emission was shifted to lower wavelength (blueshift). (c) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据