4.8 Article

Radiolytic modification and reactivity of amino acid residues serving as structural probes for protein footprinting

期刊

ANALYTICAL CHEMISTRY
卷 77, 期 14, 页码 4549-4555

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac050299+

关键词

-

资金

  1. NIBIB NIH HHS [P41-EB-01979] Funding Source: Medline

向作者/读者索取更多资源

Hydroxyl radical-mediated protein footprinting is a convenient and sensitive technique for mapping solvent-accessible surfaces of proteins and examining the structure and dynamics of biological assemblies. In this study, the reactivities and tendencies to form easily detectible products for all 20 (common) amino acid side chains along with cystine are directly compared using various standards. Although we have previously reported on the oxidation of many of these residues, this study includes a detailed examination of the less reactive residues and better defines their usefulness in hydroxyl radical-mediated footprinting experiments. All 20 amino amides along with cystine and a few tripeptides were irradiated by gamma-rays, the products were analyzed by electrospray mass spectrometry, and rate constants of modification were measured. The reactivities of amino acid side chains were compared based on their loss of mass spectral signal normalized to the rate of loss for Phe or Pro that were radiolyzed simultaneously to serve as internal standards. In this way, accurate quantitation of relative rates could be assured. A reactivity order of amino acid side chains was obtained as Cys > Met > Trp > Tyr > Phe > cystine > His > Leu, Ile > Arg, Lys, Val > Ser, Thr, Pro > Gln, Glu > Asp, Asn > Ala > Gly. Ala and Gly are far too unreactive to be useful probes in typical experiments and Asp and Asn are unlikely to be useful as well. Although Ser and Thr are more reactive than Pro, which is known to be a useful probe, their oxidation products are not easily detectible. Thus, it appears that 14 of the 20 side chains (plus cystine) are most likely to be useful in typical experiments. Since these residues comprise similar to 65% of the sequence of a typical protein, the footprinting approach provides excellent coverage of the side-chain reactivity for proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据