4.5 Article

Neuroprotective effects of erythropoietin on glutamate and nitric oxide toxicity in primary cultured retinal ganglion cells

期刊

BRAIN RESEARCH
卷 1050, 期 1-2, 页码 15-26

出版社

ELSEVIER
DOI: 10.1016/j.brainres.2005.05.037

关键词

primary isolated retinal ganglion cells; glutamate; nitric oxide; Bcl-2; Bim

向作者/读者索取更多资源

Erythropoietin receptor (EpoR) is expressed in the central nervous system (CNS), however, no clear consensus has been obtained whether Epo acts as a prosurvival factor in neurons. Because retinal ganglion cell (RGC) death is a common cause of reduced visual function in several ocular diseases, we explored whether Epo might potentially be beneficial in protecting RGCs from glutamate and nitric oxide (NO)induced cytotoxicity, using isolated RGCs by a two-step panning method. Brain-derived neurotrophic factor (BDNF) was used as a positive control. EpoR mRNA was expressed in isolated RGCs, and EpoR protein was expressed on the RGCs in the normal and ischemic retinas. Epo had less potential to improve the survival of primary R GCs in serum-free medium than BDNF. In these cells, BDNF, but not Epo, downregulated the expression of Bim, a proapoptotic Bcl-2 family member that plays a key role in cytokine-mediated cell survival, suggesting a possible mechanism for this difference. When RGCs were cultured with glutamate or an NO-generating reagent, the survival of RGCs was compromised, and Bcl-2 expression was decreased in these cells. Both Epo and BDNF significantly reduced RGC death induced by glutamate and NO. In agreement with this, these factors reversed the Bcl-2 expression. These findings suggest that Epo may be a potent neuroprotective therapeutic agent for the treatment of ocular diseases that are characterized by RGC death. (C) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据