4.7 Article

Seasonal evolution of runoff from Haut Glacier d'Arolla, Switzerland and implications for glacial geomorphic processes

期刊

JOURNAL OF HYDROLOGY
卷 309, 期 1-4, 页码 133-148

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2004.11.016

关键词

glacier hydrology; snow and ice melt; meltwater runoff; subglacial drainage; erosion rate; sediment yield

向作者/读者索取更多资源

Statistical classification of hydrograph form is used to elucidate the controls on diurnal runoff cycle evolution at Haut Glacier d'Arolla, Switzerland during the 1998 and 1999 melt seasons. Hydrographs are objectively grouped using statistical techniques into four principal types that are qualitatively interpreted as rising, falling, peaked-falling and peaked hydrographs. Peaked hydrographs are further grouped on the basis of the magnitude of their bulk flow, baseflow and diurnal flow components. Comparison with the evolution of meltwater sources and pathways demonstrates that runoff cycles evolve systematically during the melt season in response to removal of the seasonal snowpack from the ablation area. Peaked hydrographs predominate following the onset of snowpack removal and demonstrate an increasing and progressively earlier diurnal peak, but also an unusually low baseflow component that is probably due to surface melt mainly contributing direct to subglacial channels. Runoff cycle evolution has potentially significant geomorphic implications because peaked surface runoff cycles result in the formation of hydraulically efficient, channelised subglacial drainage and a significant increase in the gradient of the relationship between suspended sediment transport and discharge. Increasingly peaked diurnal cycles also result in increased basal sediment availability, most likely related to high diurnal water pressure variation within subglacial channels that may also have enhanced rates of basal sliding and hence subglacial erosion. Differences in runoff cycle form and evolution therefore have the potential to significantly influence glacial erosion rates and sediment yields. (c) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据