4.8 Article

Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0500346102

关键词

Parkinson's disease; ubiquitination; tyrosine hydroxylase; degeneration; apoptosis

向作者/读者索取更多资源

Parkin, an E3 ubiquitin ligase, has been found to be responsible for autosomal recessive juvenile parkinsonism characterized primarily by selective loss of dopaminergic neurons with subsequent defects in movements. However, the molecular mechanisms underlying this neuron loss remain elusive. Here, we characterized Drosophila parkin loss-of-function mutants, which exhibit shrinkage of dopaminergic neurons with decreased tyrosine hydroxylase level and impaired locomotion. The behavioral defect of parkin mutant flies was partially restored by administering L-DOPA, and the dopamine level in the brains of parkin mutant flies was highly decreased. Intriguingly, we found that c-Jun N-terminal kinase (JNK) is strongly activated in the dopaminergic neurons of parkin mutants and that impaired dopaminergic neuron phenotypes are dependent on the activation of the JNK signaling pathway. In consistent with this, our epistatic analysis and mammalian cell studies showed that Parkin inhibits the JNK signaling pathway in an E3 activity-dependent manner. These results suggest that loss of Parkin function up-regulates the JNK signaling pathway, which may contribute to the vulnerability of dopaminergic neurons in Drosophila parkin mutants and perhaps autosomal recessive juvenile parkinsonism patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据