4.4 Article

The electronic structure of alkali doped alkaline earth metal oxides:: Li doping of MgO studied with DFT-GGA and GGA+U

期刊

SURFACE SCIENCE
卷 586, 期 1-3, 页码 25-37

出版社

ELSEVIER
DOI: 10.1016/j.susc.2005.04.046

关键词

DFT; DFT plus U; computational chemistry; MgO; lithium doping

向作者/读者索取更多资源

Although density functional theory (DFT) is the method of choice for computational studies of the properties of metal oxides. there are a number of important systems where it fails to give a proper description of the atomic and electronic structure. These are structures which are doped or have anion vacancies and are experimentally determined to have strongly localised (hole) states, which are coupled to strong structural distortions. We have investigated the problem of oxygen hole states at the (100) surface of lithium doped MgO and show that the generalised gradient approximation of DFT results in delocalisation of the electronic states and an incorrect description of the geometry. This occurs because of the failure of DFT to cancel the electron self-interaction. The GGA + U method is one way of correcting for this problem and is applied in the present work. We consider a dopant atom in the surface layer and in a subsurface layer. For both dopant atom positions, we find a strongly distorted geometry, with the surface doped structure in best agreement with experiment, while the calculated formation energies also demonstrate that the surface dopant position is most stable. Additionally, we find strong localisation of the hole density on the oxygen atom and the excess spin density. As part of the catalytic process, we consider the energetics of hydrogen abstraction from methane with Li-doped MgO. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据