4.6 Article

Improved Production of a Heterologous Amylase in Saccharomyces cerevisiae by Inverse Metabolic Engineering

期刊

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
卷 80, 期 17, 页码 5542-5550

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.00712-14

关键词

-

资金

  1. European Research Council ERC [247013]
  2. Novo Nordisk Foundation
  3. Chalmers Foundation
  4. Novo Nordisk Fonden [NNF10CC1016517] Funding Source: researchfish

向作者/读者索取更多资源

The increasing demand for industrial enzymes and biopharmaceutical proteins relies on robust production hosts with high protein yield and productivity. Being one of the best-studied model organisms and capable of performing posttranslational modifications, the yeast Saccharomyces cerevisiae is widely used as a cell factory for recombinant protein production. However, many recombinant proteins are produced at only 1% (or less) of the theoretical capacity due to the complexity of the secretory pathway, which has not been fully exploited. In this study, we applied the concept of inverse metabolic engineering to identify novel targets for improving protein secretion. Screening that combined UV-random mutagenesis and selection for growth on starch was performed to find mutant strains producing heterologous amylase 5-fold above the level produced by the reference strain. Genomic mutations that could be associated with higher amylase secretion were identified through whole-genome sequencing. Several single-point mutations, including an S196I point mutation in the VTA1 gene coding for a protein involved in vacuolar sorting, were evaluated by introducing these to the starting strain. By applying this modification alone, the amylase secretion could be improved by 35%. As a complement to the identification of genomic variants, transcriptome analysis was also performed in order to understand on a global level the transcriptional changes associated with the improved amylase production caused by UV mutagenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据