4.8 Article

Auditory hair cell-afferent fiber synapses are specialized to operate at their best frequencies

期刊

NEURON
卷 47, 期 2, 页码 243-254

出版社

CELL PRESS
DOI: 10.1016/j.neuron.2005.06.004

关键词

-

资金

  1. NIDCD NIH HHS [R01-DC03896, R01 DC009913] Funding Source: Medline

向作者/读者索取更多资源

Auditory afferent fiber activity is driven by high-fidelity information transfer from the sensory hair cell. Presynaptic specializations, posited to maintain fidelity, are investigated at synapses with characteristic frequencies of 120 Hz and 320 Hz. Morphological data indicate that high-frequency cells have more synapses and higher vesicle density near dense bodies (DEls). Tracking vesicular release via capacitance changes identified three overlapping kinetic components of release corresponding to morphologically identified vesicle pools. High-frequency cells released faster; however, when normalized to release site number, low-frequency cells released faster, likely due to a greater Ca2+ load per synapse. The Ca2+-dependence of release was nonsaturating and independent of frequency, suggesting that release, not refilling, was rate limiting. A model of release derived from vesicle equilibration between morphologically defined pools reproduced the capacitance data, supporting a critical role in vesicle trafficking for DBs. The model suggests that presynaptic specializations enable synapses to operate most efficiently at their characteristic frequencies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据